Physicists at the Universities of Bath, Bristol and Leeds have discovered a way to precisely control the pattern of magnetic fields in thin magnetic films, which can be used to store information.
The discovery has important consequences for the IT industry, as current technology memory storage has limited scope for developing further. The density with which information can be stored magnetically in permanent memory - hard drives - is reaching a natural limit related to the size of the magnetic particles used. The much faster silicon-chip based random access memory - RAM - in computers loses the information stored when the power is switched off.
The key advance of the recent research has been in developing ways to use high energy beams of gallium ions to artificially control the direction of the magnetic field in regions of cobalt films just a few atoms thick.
 Another approach to overcoming the problem of storing data permanently with rapid retrieval times is that of magnetic random access memory chips (MRAMs); prototypes of these have already been developed by several companies. However, MRAM uses the stray magnetic fields generated by wires that carry a high electrical current to switch the data state from “up†to “downâ€, which greatly limits the density of information storage.
In contrast, if the approach at Bath is developed commercially, this would allow the manufacture of magnetic memory chips with much higher packing densities, which can operate many times faster.